
CS106B
Summer 2013

Handout #08S
July 2nd, 2012

Section Solutions 1

Problem 1. Censorship

There are several strategies for implementing the character-removal problem. The implementations
shown below go through the text string and then check to see whether the character in that position
appears in the remove string. Another possible (but generally less efficient) approach would be to
make several passes over the text string, moving one character from the remove string on each pass.

- 1 -

Problem 2. How Did We Do?

Problem 3. Stacking Cannonballs

- 2 -

Problem 4: Xzibit Words

One possible implementation is shown here:

string mostXzibitWord(Lexicon& words) {
 /* Track the best string we've found so far and how many subwords it has. */
 string result;
 int numSubwords = 0;

 foreach (string word in words) {
 /* Store all the subwords we find. To avoid double-counting
 * words, we'll hold this in a Lexicon.
 */
 Lexicon ourSubwords;

 /* Consider all possible start positions. */
 for (int start = 0; start < word.length(); start++) {
 /* Consider all possible end positions. Note that we include
 * the string length itself, since that way we can consider
 * substrings that terminate at the end of the string.
 for (int stop = start; stop <= word.length(); stop++) {
 /* Note the C++ way of getting a substring. */
 string candidate = word.substr(start, stop – start);

 /* As an optimization, if this isn't a prefix of any legal
 * word, then there's no point in continuing to extend this
 * substring.
 */
 if (!words.containsPrefix(candidate))
 break;

 /* If this is a word, then record it as a subword. */
 if (words.contains(candidate))
 ourSubwords.add(candidate);
 }
 }

 /* Having found all subwords, see if this is better than our
 * best guess so far.
 */
 if (numSubwords < ourSubwords.size()) {
 result = word;
 numSubwords = ourSubwords.size();
 }
 }

 return result;
}

In case you're curious, the most Xzibit word is “foreshadowers,” with 34 subwords!

- 3 -

Problem 5: RNA Protein Codes

Here is one possible implementation:

Vector<string> findProteins(string rna, Map<string, string>& codons) {
 Vector<string> result;

 /* Track at which index we are in the string. We'll be going one character
 * at a time through the string.
 */
 int index = 0;
 while (true) {
 /* Find the next start codon, stopping if none are left. */
 index = rna.find("AUG", index);
 if (index == string::npos) {
 return result;
 }

 /* Keep decoding codons until we hit a stop codon. */
 string protein;
 while (true) {
 /* Read the codon. */
 string codon = rna.substr(index, 3);
 index += 3;

 /* If it's a stop codon, we're done with this protein. */
 if (codons[codon] == "stop")
 break;

 /* Otherwise, add it to the result. To get the commas right, we'll
 * only add commas if the string isn't empty.
 */
 if (!protein.empty()) protein += ", ";
 protein += codons[codon];
 }

 /* Add this protein to the result. */
 result += protein;
 }
}

A process similar to this one is actually going on right now in every single cell in your body. Isn't that
amazing?

- 4 -

